Numerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison
نویسندگان
چکیده
This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF) collocation approach to solve the Volterra’s model for population growth of a species within a closed system. This model is a nonlinear integro-differential equation where the integral term represents the effect of toxin. This approach is based on orthogonal functions which will be defined. The collocation method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare these methods with some other numerical results and show that the present approach is applicable for solving nonlinear integro-differential equations.
منابع مشابه
Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder
In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...
متن کاملA rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations
The purpose of this study is to present an approximate numerical method for solving high order linear Fredholm-Volterra integro-differential equations in terms of rational Chebyshev functions under the mixed conditions. The method is based on the approximation by the truncated rational Chebyshev series. Finally, the effectiveness of the method is illustrated in several numerical examples. The p...
متن کاملSolving Volterra's Population Model via Rational Christov Functions Collocation Method
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...
متن کاملGeneralized Laguerre Polynomials and Rational Chebyshev Collocation Method for Solving Unsteady Gas Equation
In this paper we propose, a collocation method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semiinfnite interval. This approach is based on generalized Laguerre polynomials and rational Chebyshev functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with...
متن کاملRational Chebyshev Collocation Method for Solving Nonlinear Ordinary Differential Equations of Lane-emden Type
Lane-Emden equation is a nonlinear singular equation that plays an important role in the astrophysics. In this paper, we have applied the collocation method based on rational Chebyshev functions to solve Lane-Emden type equations. The method reduces solving the nonlinear ordinary differential equation to solving a system of nonlinear algebraic equations. The comparison of the results with the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1008.2337 شماره
صفحات -
تاریخ انتشار 2010